全国客服热线:021-6810 0000

地址:上海市南汇空港工业区金闻路68-A号
电话:021-68100000
传真:021-61398677
在线QQ

关于叶轮中固液两相流动分析探究
研究表明,离心泵叶轮内的流动基本上是由相对速度较小的尾流区和近似于无粘性的射流区组成。尾流区紧贴在叶轮的前盖板和非工作面上,尾流区越宽,射流一尾流之间的剪层越薄,两者之间的速度梯度越大。尾流的形成与发展是边界层的发展、二次流的发展、流动分离和分层效应等因素相互影响相互促进而形成的,简而言之,就是由于叶轮流道内的流体受到叶片作功不均匀造成的。 靠近叶片工作面强,而靠近非工作面弱,在逆向压力梯度作用下,靠近出口处非工作面的边界层容易产生分离,使液流在边界层附近产生回流和脱流,形成尾流区。对于排污泵除了要考虑液相的分层效应还要考虑固相的分层效应,对于定常运动的颗粒运动分析可知,在每一颗粒轨迹线上只有一个特定的运动速度能满足平衡方程。相对于平衡轨迹上的颗粒速度过大或不足都将引起附加的哥氏力与离心力的指向。 比平衡流动所要求慢的颗粒倾向于移向吸力边,比平衡流动所要求快的颗粒,倾向于移向压力边,这就是所谓的颗粒运动的分层效应。 分层效应与叶片的吸力边、压力边的速度差有关,即与叶片上的载荷有关,欲减小分层效应必须减小叶片上的载荷。排污泵为增加过流能力叶片数比较少,因此叶片上载荷增加,为了减少分层效应,必须加长流道以减少叶片单位长度上的载荷,因此叶片数越少叶片包角越大,从而使出口角份较小。 水泵小编从实际流场来看,情况也是如此固体颗粒有趋向于叶片工作面的趋势。 质量较大的颗粒在叶轮出口处的速度可为水流速度的好几倍,颗粒越大,这种差异越突出,另外,质量大的固体运动曲率大,相反小颗粒的固体在叶轮中运动的曲率小,因此在进行排污泵叶轮设计时,出口角一般比清水泵小,包角加大,这样可减少固体颗粒对叶片出口的撞击,减少磨损提高效率,这与上面的分析结论一致。 气动隔膜泵的设计 气动隔膜泵是气动隔膜泵中隔开输送介质和润滑介质,实现无泄漏输送介质的关键零件,其设计不同于片状隔膜,我们从结构上保证其承受低压状态,通过预定伸长量使之工作状态下附加变形极小,设计中遵循以下原则: 1)气动隔膜泵内外表面均无相对滑动摩擦; 2)控制隔膜内外表面压差在0.1MPa以内; 3)采用浮动承压环形成浮动支承; 4)提高隔膜抗拉和抗疲劳性能; 5)合理选择隔膜硬度; 6)保证隔膜装拆方便; 7)给定隔膜预伸长值△L。  若气动隔膜泵工作变形段尺寸为L,而安装尺寸为L,那么环形隔膜设计长度值则为: L=△L+L\' 其中△L=e/sin(arctge/L)-L 通常△L=0.5-2.Omm,考虑气动隔膜泵虽承压较低,但接触腐蚀性介质且工作中循环挠动加上结构尺寸要求严格,我们和有关制造厂和科研院校研制了丁腊橡胶、聚氨醋橡胶和夭然橡胶等多种隔膜,经对比试验,聚氨醋隔膜物化性能和疲劳性能较优。 刚性支承环设计 气动隔膜泵中刚性支承环有别于普通转子泵和往复式隔膜泵。 它的设置不仅使轴向和径向密封容易形成,而且可以保护隔膜,保证泵具有较高排出压力和良好的自吸性能。 刚性支承环上任意质点的运动为垂直轴线截面内的往复运动和回转运动合成的平面运动即平面蠕动。刚性支承环的设计应考虑采用轻质材料或中空结构,以减轻重量,减小惯性力。 其工作状态下外表面承受不平衡液压力作用,使传动轴上承受径向力F,当径向密封点在远离组合隔离机构最低点时有下式:式中△P-压差,MPa B-刚性支承环宽度,cm r-刚性支承环半径,cm 由上式可知,刚性支承环承受较大的径向力,因此在设计中不仅应保证其足够的刚度和强度,同时还应考虑传动轴可能产生挠度,通过结构设计确保泵径向间隙在设计范围内。 气动隔膜泵性能特点 。 1、性能特点 气动隔膜泵以独特的结构、优化的设计、参数的合理匹配及高质量的隔膜而具备优良的性能,主要在如下: 1)无泄漏。 由于泵中环形隔膜将输送介质与润滑介质隔开,输送介质无法外泄。 2)自吸性能强。因是回转式容积泵,故具有较好的自吸能力,可油、气、水混合输送,泵无需灌引,直接启动。 3)适应范围广。 可输送一般液体亦可输送粘稠性介质,应用参数范围大。 4)效率高。传动结构紧凑简单,和同参数叶片泵相比,效率高5%以上,且高效区宽广。 该产品易于系列化、通用化;同一机座产品可更换过流部件、调整泵速和间隙来适应不同工况和介质。目前环形隔膜泵已形成Q=1~50m3/h,P1.OMPa的系列产品,可广泛用于输送强腐蚀性、易燃爆、剧毒和放射性的以及高纯度或高粘度的介质等。此外,依不同用户要求可采用调速传动方式,还可配用隔膜报警自动执行器。 。 2、产品实刚性能 据"军工舰船用气动隔膜泵的研制"课题鉴定要求,两种产品经500h型式试验后,经检测其性能见表1。 由此可见,产品实测性能均达到机械部课题攻关指标,具有良好的自吸性能及气液混输、高效率等特性。 此外,我们用HM-2.0/0.4型环形隔膜泵进行了对比试验,其输送不同介质和不同压差下的性能见表2。 然,粘度和压差不同时,相同的密封间隙下,所产生的内泄漏量不同,使得容积系数不同。 空调泵扬程估算方法探究 空调泵扬程是怎么估算出的?水泵为您介绍空调泵扬程估算方法。 这里所谈的是闭式空调凉水系统的空调泵扬程估算,因为这种系统是最常用的系统。   1.凉水机组阻力:由机组制造厂提供,一般为60~100kPa。  2.管路阻力:包括磨擦阻力、局部阻力,其中单位长度的磨擦阻力即比摩组取决于技术经济比较。 若取值大则管径小,初投资省,但水泵运行能耗大;若取值小则反之。 目前设计中凉水管路的比摩组宜限制在150~200Pa/m范围内,管径较大时,取值可小些。  3.空调未端装置阻力:末端装置的类型有风机盘管机组,组合式空调器等。 它们的阻力是依据设计提出的空气进、出空调盘管的参数、冷量、水温差等由制造厂经过盘管配置计算后提供的,许多额定工况值在产品样本上能查到。此项阻力一般在20~50kPa范围内。   4.调节阀的阻力:空调商品房间总是要求限制室温的,通过在空调末端装置的水路上设置电动二通调节阀是实现室温限制的一种手段。 二通阀的规格由阀门全开时的流通能力与允许压力降来选择的。如果此允许压力降取值大,则阀门的限制性能好;若取值小,则限制性能差。 阀门全开时的压力降占该支路总压力降的百分数被称为阀权度。水系统设计时要求阀权度S>0.3,于是,二通调节阀的允许压力降一般不小于40kPa。   依据水泵以上所述,可以粗略估量出一幢约100m高的高层建筑空调水系统的压力损失,也即循环水泵所需的扬程:  1.凉水机组阻力:取80kPa(8m水柱);  2.管路阻力:取冷冻机商品屋内的除污器、集水器、分水器及管路等的阻力为50kPa;取输配侧管路长度300m与比摩阻200Pa/m,则磨擦阻力为300*200=60000Pa=60kPa;如考虑输配侧的局部阻力为磨擦阻力的50%,则局部阻力为60kPa*0.5=30kPa;系统管路的总阻力为50kPa+60kPa+30kPa=140kPa(14m水柱);  3.空调末端装置阻力:组合式空调器的阻力一般比风机盘管阻力大,故取前者的阻力为45kPa(4.5水柱);  4.二通调节阀的阻力:取40kPa(0.4水柱)。   5.于是,水系统的各部分阻力之和为:80kPa+140kPa+45kPa+40kPa=305kPa(30.5m水柱)  6.水泵扬程:取10%的安全系数,则扬程H=30.5m*1.1=33.55m。依据上面的空调泵扬程估算公式,基本可以掌握同等规模建筑的空调系统压力损失范围。尤其是注意,避免因错误估计,导致空调泵扬程选的过大,造成浪费。
企业文化  |  企业荣誉  |  成功案例  |  诚招代理  |  网站地图  |  下载中心
主营产品:自吸泵 zx自吸泵 防爆自吸泵 不锈钢自吸泵 自吸水泵 无密封自控自吸泵 自控自吸泵 氟塑料自吸泵 立式自吸泵
沪ICP备07023727号 版权所有 2016 上海上诚泵阀制造有限公司