
气动隔膜泵安装指导方法气动隔膜泵安装其实说来也挺简单,主要就是要细心,还有就是按照说明指定的慢慢安装就行了。吸入管的管径不得小于泵入口端口径,如输送高粘度流体时,吸入管的管径最好大于泵入口口径。
入口端的吸入配管必须耐用,没有皱折,才能够产生高真空状态。
出口配管的管径至少要与出口径相等,或者稍微大些以降低摩擦损失。所有配管及接头必须是密封不漏的,否则会降低泵的自吸能力。
气动隔膜泵安装:如若忽略安装细节,长期以来的细心策划、研究及挑选将仍可能导致不佳泵送效果及影响泵的使用寿命。
位置:噪音、安全及其他逻辑因素通常都对设备应安装的位置有要求。有冲突要求的并联安装将可能导致使用区域的阻塞,影响到其他泵的安装。
使用:首先,泵的位置必须是便于使用的,这样将便于维修人员进行日常检查及调试。供气:每台泵应有一条通气管,且通气管应能提供足以达到理想泵送流量的空气量。气压按不同泵送需求而定,但勿超过7BAR。
(125PSI)安装高度:请充分考虑泵的自吸能力以避免自吸减少的问题。
管路:直至考虑过每个可能发生管路问题的位置后才能最终决定泵位。安装应选择在一个最短及最直进出口管路的连接处。
应尽量避免额外的弯管及管件设施。泵体应能独立支撑所有管路。而且,管路应有序排列以避免给泵体管路装置产生应力。
可以安装活动软管以消除泵自然往返动作而产生的应力。
若要将泵体与一固定底座连接,在泵体及底座间的安置缓冲垫将有助减少泵体震动。如果气动隔膜泵将用于泵送细致介质,则须确认所有的管道接头必须是密封不外漏的,而且自吸的扬程须于泵的能力所及之内。
要停止泵在紧急情况下的运作,只需关上安装在气管上的“截止"阀门。
一个适当的功能阀将终止泵的供气,从而阻止输出。“截止"阀门应安装在离泵不远的地方以便应付紧急情况。气动隔膜泵是一种新型输送机械,可以输送各种腐蚀性液体,带颗粒的液体,高粘度、易挥发、易燃、剧毒的液体。
全面了解离心泵流量调节的主要方式
离心泵是广泛应用于化工工业系统的一种通用流体机械。它具有性能适应范围广(包括流量、压头及对输送介质性质的适应性)、体积小、结构简单、操作容易、操作费用低等诸多优点。通常,所选离心泵的流量、压头可能会和管路中要求的不一致,或由于生产任务、工艺要求发生变化,此时都要求对泵进行流量调节,实质是改变离心泵的工作点。
离心泵的工作点是由泵的特性曲线和管路系统特性曲线共同决定的,因此,改变任何一个的特性曲线都可以达到流量调节的目的。目前,离心泵的流量调节方式主要有调节阀控制、变速控制以及泵的并、串联调节等。由于各种调节方式的原理不同,除有自己的优缺点外,造成的能量损耗也不一样,
水泵认为为了寻求最佳、能耗最小、最节能的流量调节方式,必须全面地了解离心泵的流量调节方式。
一、改变管路特性曲线 改变离心泵流量最简单的方法就是利用泵出口阀门的开度来控制,其实质是改变管路特性曲线的位置来改变泵的工作点。
二、改变离心泵特性曲线 根据比例定律和切割定律,改变泵的转速、改变泵结构(如切削叶轮外径法等)两种方法都能改变离心泵的特性曲线,从而达到调节流量(同时改变压头)的目的。但是对于已经工作的泵,改变泵结构的方法不太方便,并且由于改变了泵的结构,降低了泵的通用性,尽管它在某些时候调节流量经济方便1,在生产中也很少采用,这里仅分析改变离心泵的转速调节流量的方法。据分析,当改变泵转速调节流量从Q1下降到Q2时,泵的转速(或电机转速)从n1下降到n2,转速为n2下泵的特性曲线Q-H与管路特性曲线He=H0+G1Qe2(管路特曲线不变化)交于点A3(Q2,H3),点A3为通过调速调节流量后新的工作点。
此调节方法调节效果明显、快捷、安全可靠,可以延长泵使用寿命,节约电能,另外降低转速运行还能有效的降低离心泵的汽蚀余量NPSHr,使泵远离汽蚀区,减小离心泵发生汽蚀的可能性2。缺点是改变泵的转速需要有通过变频技术来改变原动机(通常是电动机)的转速,原理复杂,投资较大,且流量调节范围小。
三、泵的串、并连调节方式 当单台离心泵不能满足输送任务时,可以采用离心泵的并联或串联操作。水泵观察到用两台相同型号的离心泵并联,虽然压头变化不大,但加大了总的输送流量,并联泵的总效率与单台泵的效率相同;离心泵串联时总的压头增大,流量变化不大,串联泵的总效率与单台泵效率相同。
节流阀节流口堵塞的3个原因
节流阀需要经常操作,因此应安装在易于方面便操作的位置上。同时安装时要注意介质方向与阀体所标箭头方向保持一致。节流阀的节流口堵塞原因一般有以下几点:
1、油液中的机械杂质或因氧化析出的胶质、沥青、碳渣等污物堆积在节流缝隙处。
2、由于油液老化或受到挤压后产生带电的极化分子,而节流缝隙的金属表面上存在电位差,故极化分子被吸附到缝隙表面,形成牢固的边界吸附层,吸附层厚度一般为5~8微米,因而影响了节流缝隙的大小。以上堆积、吸附物增长到一定厚度时,会被液流冲刷掉,随后又重新附在阀口上。这样周而复始,就形成了流量的脉动。
3、阀口压差较大时,因阀口温度高,液体受挤压的程度增强,金属表面也更易受摩擦作用而形成电位差,因此压差大时容易产生堵塞现象。