全国客服热线:021-6810 0000

地址:上海市南汇空港工业区金闻路68-A号
电话:021-68100000
传真:021-61398677
在线QQ

分析耐腐蚀离心泵是依据什么原理进行工作的
在使用耐腐蚀离心泵前需要先了解机器的运行原理,这样才能更好地进行操作使用,下面我们来说说耐腐蚀离心泵是依据什么原理进行工作的。  耐腐蚀离心泵的工作原理就是在泵内充满水的情况下,叶轮旋转产生离心力,叶轮槽道中的水在离心力的作用下甩向外围流进泵壳,于是叶轮中心压力降低,这个压力低于进水管内压力,水就在这个压力差的作用下由吸水池流入叶轮。这样水泵就可以不断地吸水不断地供水了。   除了叶轮的作用之外,螺旋形泵壳起的作用也是很重要的。 从叶轮里获得了能量的液体流出叶轮时具有较大的功能,这些液体在螺旋形泵壳内被收集起来,并在后面的扩散管里把动能变成压力能。  耐腐蚀离心泵与其他种类的泵相比,它具有构造简单、不易磨损、运行平稳、噪音小、出水均匀、调节方便、效率高等优点,因此化工离心泵得到了广泛的应用。  要了解耐腐蚀离心泵的工作原理,那就必须要了解什么是离心,离心其实是物体惯性的表现.比如雨伞上的水滴,当雨伞缓慢转动时,水滴会跟随雨伞转动,这是因为雨伞与水滴的摩擦力做为给水滴的向心力使然.但是如果雨伞转动加快,这个摩擦力不足以使水滴在做圆周运动,那么水滴将脱离雨伞向外缘运动.就象用一根绳子拉着石块做圆周运动,如果速度太快,绳子将会断开,石块将会飞出.这个就是所谓的离心.  离心泵就是根据这个原理设计的.高速旋转的叶轮叶片带动水转动,将水甩出,从而达到输送的目的.  离心泵有好多种.从使用上可以分为民用与工业用泵,从输送介质上可以分为熔盐泵,清水泵、杂质泵、耐腐蚀泵等。 关于泵动力体系数据摹拟和预设探究 1、密封件的结构设计 流体动力密封的作用原理是依靠半开式叶轮的背叶片,以及副叶轮在旋转时对输送介质作功而形成逆压来阻止介质的泄漏,从而实现渣浆泵在运转时无泄漏。水泵在本文直接将副叶轮部分简化,改为在叶轮前后盖板安装副叶片的形式。因机械密封具有密封效果好、不磨损转轴、使用寿命长、消耗功率小等优点,因此在动密封部位采用机械密封作为停车密封比较多。 另外用填料密封进一步净化机械密封用水,达到优质密封的目的。 1.1 组合密封件结构设计计算 副叶片外径均是由计算确定的,通常副叶片的外径等于或小于泵叶轮的外径,其内径应取较小的值,因为在同样条件下内径越小产生的密封压头越大,所以前后盖板上的副叶片的内径通常取与轮毅或轴套相同的尺寸。 在叶轮前后盖板平面上作几条开式径向肋筋,这就是副叶片。 实验表明,副叶片的叶片形状对其产生的密封压头影响很小,所以通常多采用径向叶片,这可简化制造工艺。 叶片数通常为 6~8 片,视叶轮大小而定。 有的叶轮由于尺寸较大,叶片数达 10 片以上。本设计因为叶轮为370 mm,故可取副叶片为 12 片,前后盖板均有。副叶片结构图。 虽然各种试验表明,轴向间隙不能过小,特别在输送磨蚀性强的渣浆时,旋转件与壳体间的磨损十分突出,想要保持较小间隙是很难的。一般可取轴向间隙为 2~3mm,径的径向间隙均以小为好,但从制造、装配和输送介质中的悬浮固体颗粒大小来考虑向间隙可稍大一些。本设计的间隙取 2 mm.总轴向力 A 计算为: A=A 1 - A 2 +G(1)式(1)中,A1为副叶片轴向力,N;A2为轮盖轴向力,N;G 为轮叶本身重力,N. 加上副叶片后,副叶片强迫后泵腔的液体旋转从而改变叶轮后盖板上的压力分布,而达到平衡的轴向力的目的,则: F=πω2ρ16[(s+t s)2 - 1](R 2 e - R 2 b)(2)要达到实现轴向力平衡只须满足:A=F,只要确定了轮毂半径 R b、叶片厚度 s 和间隙 t,则可确定背叶片外径De.间隙 t 越小则平衡能力越大,但要满足加工工艺的要求,一般取 t=0.5~2 mm,叶片高度对功率消耗有一定的影响,s=5~10 mm.将 s=12 mm,t=2 mm,背叶片外径 De= 300 mm,轮毂半径 185 mm 带入上式可计算出轴向力为2.93×10 6 N.1.2 固液两相流泵的设计参数 本论文选用泵为 150- 50 型固相两相流离心泵,是使用在化工生产或其它两相流介质下的固液两相流泵系列,设计参数为:体积流量 150 m 3 /h,额定扬程 50 m,叶片数 5,叶轮额定转速 1 480 r/min,固相质量浓度 15%,固液混合比重 。 1.7,固相粒径 0.05 mm. 经换算可知,该泵的比转数 n s = 3.65n Q姨H 3/4 =58,属低比转数泵。清水流场密度取 ρ液=1 000 kg/m 3,则固体颗粒密度 ρ固=2 300 kg/m 3,混合物中固相体积比浓度c v =15%.2、Fluent 数值模拟 计算流体动力学简称CFD,是通过计算机数值计算和图象显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。CFD的基本思想可以归结为:把原来的时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通过一定的原则和方式建立起来关于这些离散点上场变量之间关系的代数方程组,然后求解代数方程组获得场变量的近似值。 2.1 三维实体建模 高质量的实体建模是网格划分的必要前提,直接影响网格质量的生成,最终决定数值计算结果的正确性与可靠性,因此建模过程至关重要。FLUENT 的前处理模块 GAMBIT 一般可用来建立不太复杂的模型,因 CFD 是针对泵内的流体部分进行数值计算,为便于 GAMBIT 的网格处理,将在 Pro/E 中对泵内流道的流体部分直接实体建模。 2.2 网格划分 理论上,用于 CFD 计算的网格尺寸越小,数量越多,则计算结果就越接近实际流场。但综合考虑到计算机硬件的匹配以及计算的稳定性和收敛性等问题,本文经多次划分检查网格质量并计算,选用了合适的网格尺寸。 各过流部件流道的网格划分单元体数量为:Nodes 有 758 417;Faces 有 7 189 113;Cells 有 3 431 617.2.3 后处理部分 按收敛判断依据完成计算,再利用 FLUENT、ANSYS进行数据处理和图像显示,并进行分析研究。分别模拟出固液两相流泵在清水流场和固液两相流场在转速 300 rpm、转速 1 000 rpm 和额定转速 1 480 rpm 时的蜗壳、叶轮及其连接面、中分面等的相对速度矢量图和压力云图,由于篇幅限制,以下只列出转速为 1 480 rpm 时的部分相对速度矢量图和压力云图。 3、实验验证 对泵进行整机实验验证,在工况相同、固体颗粒浓度相同的情况下与传统密封的固液两相流泵比较,发现流体动力密封下泄漏量减少,同时泵的耐磨寿命大大提高。 4、水泵结语 对固液两相流泵的密封件进行改造,并对固液两相流泵内部三维湍流流动进行了数值模拟。利用数值模拟结果分析了固液两相在泵内的流动状况,对固液两相流泵内密封区域的压力、速度及相态分布分别进行了讨论:在叶轮背面与正面分别形成高压区域和低压区域,并且大小几乎相等,液流在各个压力面上的方向一致;背叶片和叶轮背面上的压力沿径向是逐渐增加的,在叶片的外边缘处压力达到最大值。 通过数值模拟发现该计算模型能较好地预测固液两相流泵在设计流量工况附近的密封性能以及密封泄露,分析可知副叶片形成的负压区能防止液体泄漏,与设计理论相吻合;并预测出能在泵的入口处减少内泄,泵出口处减少回流现象。 QBY-25气动隔膜泵特点及工作原理 QBY-25气动隔膜泵特点: 1、不需灌引水.吸程高达5m.扬程达70m.出口压力≥6bar。 2、流动宽敞,通过性能好.允许通过最大颗粒直径达10mm。抽送泥浆、杂质日寸,对泵磨损甚微;3、扬程、流量可通过气阀开度实现无级调节(气压调节在17 bar之间): 4、该泵无旋转部件,没有轴封,隔膜j|等抽送的介质与泵的运动部件、工件介质完全隔开,所输送的介质不会向外泄漏。所以抽送有毒、易发挥或腐蚀性介质时,不会造成环境污染和危害人身安全;5、不必用电.在易燃、易爆场所使用安全可靠;6、QBY气动隔膜泵可以浸没在介质中工作: 7、QBY气动隔膜泵使用方便、工作可靠、开停只需简单地打开和关闭气体阀门.即使由于意外情况而长时间无介质运行或突然停机泵也不会因此而损坏.一旦超负荷,泵会自地动停机,具有自我保护性能,当负荷恢复正常后,又能自动启动运行;8、QBY气动隔膜泵结构简单、易损件少,该泵结构简单,安装、维修方便,泵输送的介质不会接触到配气阀,联杆等运动部件,不象其他类型的泵因转子、活塞、齿轮、叶片等部件的磨损而使性能逐步下降: 9、QBY气动隔膜泵可输送较粘的液体(粘度在1万厘泊以下):1 0、QBY气动隔膜泵无须用油润滑,即使空转.对泵也无任何影响。优 势QBY气动隔膜泵采用压缩空气为动力源,对于各种腐蚀性液体,带颗粒的液体,高粘度、易挥发、易燃、剧毒的液体,均能予以抽光吸尽,尤以适合易燃易爆场。QBY-25气动隔膜泵简要说明: 在泵的两个对称工作腔中,各装有一块有弹性的隔膜,联杆将两块隔膜结成一体,压缩空气从泵的进气头进入配气阀后,推动两个工作腔内的隔膜,驱使联杆联接的两块隔膜同步运动。 与此同时,另一工作腔中的气体则从隔膜的背后排出泵外。一旦到达行程终点。配气机构则自动地将压缩空气引入另一个工作腔,推动隔膜朝相反方向运动,这样就形成了两个隔膜的同步往复运动。 每个工作腔中设置有两个单向球阀,隔膜的往复运动,造成工作腔内容积的改变,迫使两个单向球阀交替地开启和关闭,从而将液体连续地吸入和排出。 工作原理分析:泵动原理:隔膜泵是一种气动式正向位移自吸泵,右边之泵动解说图显示泵在未自吸前初次泵动之流动模式。 图1:空气经由气阀压缩进入膜片A之背面,由膜片挤压液室。此种以空气驱动的方式可免除一般活塞驱动之机械应力,从而显著地延长膜片的寿命。 在压缩空气将膜片A推离中心体时,另一端之膜片B同时被连结之中心轴拉向中心体,此时,膜片B背面之空气由出口排放到泵体外。如此使B室形成真空状态,因而能靠外面大气压力之作用将流体由入口支管将阀球推离阀座使流体能自由地进入B室直至填满。 图2:当受空气挤压之膜片A达到其位移极限时,空气阀会将空气引导至膜片B之背面,同样形成挤压力而使其推离中心体,同时将连结的膜片A拉回中心体,此时膜片B之驱动所产生的液压将入口阀球推回阀座,同时将出口阀球推离阀座使流体能被挤压而从出口排出泵体外。膜片A被拉回中心体这个动作使A室形成真空状态,因而能靠大气压力作用将流体由入口支管将阀球推离阀座而进入A室直至填满。图3:当膜片之运动完成时,空气阀再次引导空气至膜片A之背面,同时膜片B做空气排放动作。 在泵回复到原启动状态时,泵内的两个膜片各自完成了一个空气排放或流体排放的过程。这构成了一个循环泵送过程。依使用状况,泵通过数次完全的循环泵送动作而使泵达到自吸状态。
企业文化  |  企业荣誉  |  成功案例  |  诚招代理  |  网站地图  |  下载中心
主营产品:自吸泵 zx自吸泵 防爆自吸泵 不锈钢自吸泵 自吸水泵 无密封自控自吸泵 自控自吸泵 氟塑料自吸泵 立式自吸泵
沪ICP备07023727号 版权所有 2016 上海上诚泵阀制造有限公司