
上诚改进型不锈钢气动隔膜泵作为干粉泵的使用时扬程可以达到位120米各类干粉例如面粉、滑石粉、水泥粉、煅制氧化硅粉, 白碳黑粉, 膨胀云母石粉等没有非常严重磨损性的粉类物料,以上各个工况环境原来都需要采用人工搬运,这样比较费时费力,所以人们都想购买到一款干粉泵能替代人工搬运的作用,扬子江泵业在原来气动隔膜泵产品的基础上增加了一套气源优化装置,让干粉泵达到了一泵多用的效果。增加了气源优化装置的隔膜泵产品动力十足,好比汽车发动机采用了涡轮增压的功能一样增加了发动机的动力,干粉泵不需要改变泵体的大小就能达到输送干粉的效果,干粉泵只是在空气腔里面引出了多余的气源到泵腔里面让泵体里面空气量更大,使其干粉泵吸力及扬程都有所增加。上诚改进型不锈钢气动隔膜泵干粉泵订货须知选用干粉泵前需要告知我们所输送的干粉是什么粉类,干粉泵所输送的粉类比重,以及需要的干粉泵流量、干粉泵扬程、干粉泵材质等,总之现场的工况条件讲得越详细越好。
塑料耐腐蚀泵适用于什么情况下液体循环
塑料材质泵用于液体循环时要注意温度在合理范围内,严禁空载和输送有机溶剂。
只要选型、使用合理塑料泵的使用寿命会远远超过铸铁泵和不锈钢泵。
塑料泵应用越来越广泛,在众多的工况中可以用来替代金属泵,使用性能甚至比金属泵好的多。
要了解塑料泵的适用场合首先要了解塑料材质的物理化学性能。泵上常用的塑料有聚丙烯、增强聚丙烯、氟塑料三种,他们具体的性能可以上百度百科查询,我们这里主要说一下他们在泵领域应用上的分别。
聚丙烯料注塑的泵成本较低,在抗腐蚀上和氟塑料等优质材料没有很明显的区别,但是加工性能较差,抗压能力和抗老化性能都相对较差,所以一般用于室内工作、泵体较小以及精密度不高的泵。增强聚丙烯是改性塑料,ABS、RPP等都广泛应用于耐腐蚀自吸泵领域,它们具有较好的机械加工属性,我公司生产的FP耐腐蚀离心泵、FPZ耐腐蚀自吸泵就是采用的RPP材质。氟塑料进入中国后彻底改变了塑料泵不耐用的缺点,在多方面的性能超过了不锈钢,超过25年的抗老化性能可以应用于露天场合。
PTFE材质较软一般由于衬氟泵的衬里,PVDF材质具有很好的强度可以直接注塑成泵体,目前已经由于生产氟塑料气动隔膜泵、氟塑料液下泵已经强力真空自吸泵等。
关于泵动力体系数据摹拟和预设探究
1、密封件的结构设计 流体动力密封的作用原理是依靠半开式叶轮的背叶片,以及副叶轮在旋转时对输送介质作功而形成逆压来阻止介质的泄漏,从而实现渣浆泵在运转时无泄漏。
水泵在本文直接将副叶轮部分简化,改为在叶轮前后盖板安装副叶片的形式。因机械密封具有密封效果好、不磨损转轴、使用寿命长、消耗功率小等优点,因此在动密封部位采用机械密封作为停车密封比较多。
另外用填料密封进一步净化机械密封用水,达到优质密封的目的。
1.1 组合密封件结构设计计算 副叶片外径均是由计算确定的,通常副叶片的外径等于或小于泵叶轮的外径,其内径应取较小的值,因为在同样条件下内径越小产生的密封压头越大,所以前后盖板上的副叶片的内径通常取与轮毅或轴套相同的尺寸。 在叶轮前后盖板平面上作几条开式径向肋筋,这就是副叶片。
实验表明,副叶片的叶片形状对其产生的密封压头影响很小,所以通常多采用径向叶片,这可简化制造工艺。 叶片数通常为 6~8 片,视叶轮大小而定。
有的叶轮由于尺寸较大,叶片数达 10 片以上。本设计因为叶轮为370 mm,故可取副叶片为 12 片,前后盖板均有。副叶片结构图。
虽然各种试验表明,轴向间隙不能过小,特别在输送磨蚀性强的渣浆时,旋转件与壳体间的磨损十分突出,想要保持较小间隙是很难的。一般可取轴向间隙为 2~3mm,径的径向间隙均以小为好,但从制造、装配和输送介质中的悬浮固体颗粒大小来考虑向间隙可稍大一些。本设计的间隙取 2 mm.总轴向力 A 计算为: A=A 1 - A 2 +G(1)式(1)中,A1为副叶片轴向力,N;A2为轮盖轴向力,N;G 为轮叶本身重力,N. 加上副叶片后,副叶片强迫后泵腔的液体旋转从而改变叶轮后盖板上的压力分布,而达到平衡的轴向力的目的,则: F=πω2ρ16[(s+t s)2 - 1](R 2 e - R 2 b)(2)要达到实现轴向力平衡只须满足:A=F,只要确定了轮毂半径 R b、叶片厚度 s 和间隙 t,则可确定背叶片外径De.间隙 t 越小则平衡能力越大,但要满足加工工艺的要求,一般取 t=0.5~2 mm,叶片高度对功率消耗有一定的影响,s=5~10 mm.将 s=12 mm,t=2 mm,背叶片外径 De= 300 mm,轮毂半径 185 mm 带入上式可计算出轴向力为2.93×10 6 N.1.2 固液两相流泵的设计参数 本论文选用泵为 150- 50 型固相两相流离心泵,是使用在化工生产或其它两相流介质下的固液两相流泵系列,设计参数为:体积流量 150 m 3 /h,额定扬程 50 m,叶片数 5,叶轮额定转速 1 480 r/min,固相质量浓度 15%,固液混合比重 。
1.7,固相粒径 0.05 mm. 经换算可知,该泵的比转数 n s =
3.65n Q姨H 3/4 =58,属低比转数泵。清水流场密度取 ρ液=1 000 kg/m 3,则固体颗粒密度 ρ固=2 300 kg/m 3,混合物中固相体积比浓度c v =15%.2、Fluent 数值模拟 计算流体动力学简称CFD,是通过计算机数值计算和图象显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。CFD的基本思想可以归结为:把原来的时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通过一定的原则和方式建立起来关于这些离散点上场变量之间关系的代数方程组,然后求解代数方程组获得场变量的近似值。
2.1 三维实体建模 高质量的实体建模是网格划分的必要前提,直接影响网格质量的生成,最终决定数值计算结果的正确性与可靠性,因此建模过程至关重要。FLUENT 的前处理模块 GAMBIT 一般可用来建立不太复杂的模型,因 CFD 是针对泵内的流体部分进行数值计算,为便于 GAMBIT 的网格处理,将在 Pro/E 中对泵内流道的流体部分直接实体建模。
2.2 网格划分 理论上,用于 CFD 计算的网格尺寸越小,数量越多,则计算结果就越接近实际流场。但综合考虑到计算机硬件的匹配以及计算的稳定性和收敛性等问题,本文经多次划分检查网格质量并计算,选用了合适的网格尺寸。
各过流部件流道的网格划分单元体数量为:Nodes 有 758 417;Faces 有 7 189 113;Cells 有 3 431 617.2.3 后处理部分 按收敛判断依据完成计算,再利用 FLUENT、ANSYS进行数据处理和图像显示,并进行分析研究。分别模拟出固液两相流泵在清水流场和固液两相流场在转速 300 rpm、转速 1 000 rpm 和额定转速 1 480 rpm 时的蜗壳、叶轮及其连接面、中分面等的相对速度矢量图和压力云图,由于篇幅限制,以下只列出转速为 1 480 rpm 时的部分相对速度矢量图和压力云图。
3、实验验证 对泵进行整机实验验证,在工况相同、固体颗粒浓度相同的情况下与传统密封的固液两相流泵比较,发现流体动力密封下泄漏量减少,同时泵的耐磨寿命大大提高。
4、水泵结语 对固液两相流泵的密封件进行改造,并对固液两相流泵内部三维湍流流动进行了数值模拟。利用数值模拟结果分析了固液两相在泵内的流动状况,对固液两相流泵内密封区域的压力、速度及相态分布分别进行了讨论:在叶轮背面与正面分别形成高压区域和低压区域,并且大小几乎相等,液流在各个压力面上的方向一致;背叶片和叶轮背面上的压力沿径向是逐渐增加的,在叶片的外边缘处压力达到最大值。 通过数值模拟发现该计算模型能较好地预测固液两相流泵在设计流量工况附近的密封性能以及密封泄露,分析可知副叶片形成的负压区能防止液体泄漏,与设计理论相吻合;并预测出能在泵的入口处减少内泄,泵出口处减少回流现象。